CH 7 MODERN PERIODIC TABLE

CH / WIODERIN PERIODIC TABLE
Multiple choice questions (page 247)
1) The lanthanide are placed in the periodic table at the
a) left hand side b) right hand side c) middle d) bottom
2) if the valence shell electronic configuration is ns ² np ⁵ the element will belong to
a) alkali metalsb) halogensc) alkaline earth metals actinidesd) actinides
Q. 3) Explain the following.
¹³ Al a is metal ¹⁴ Si is metalloid and ¹⁵ P is nonmetal.(page 228)
Q. 4) Explain the following: Cu forms coloured salt while Zn form colourless salt (page 228)
Q.5) Define: a) Screening effect (page 230) b) Ionic radius(page 233) c) Ionisation Enthalpy(page 235) d) Electronegativity(page 239)
Q. 6) Give reason: noble gases possess relatively large atomic size (page 233)
CH 5:CHEMICAL BONDING
Q.1 MULTIPLE CHOICE QUESTIONS
1) Which molecule is linear ? (Pg 168)
(a) SO ₃ (b) CO ₂ (c) H ₂ S (d) Cl ₂ O

2) The angle between two covalent bonds is minimum in _____(pg168)

(a) CH ₄
(b) C ₂ H ₂
(c) NH ₃
(d) H_2O
Q 2) Predict the shape and bond angles in the following molecules: (pg 140)
(a) CF_4 (b) NF_3 (c) HCN (d) H_2S
Q 3) In case of bond formation in acetylene molecule: (pg152)
a) How many covalent bonds are formed ?
b) State number of Sigma and π - bonds formed
c) Name the type of hybridization

Q 4) State Octet rule (pg 127)

Q 5)Define:

a)Bond length (b) Bond Enthalpy (c) Hybridization

Q 6 Distinguish between Sigma and Pi bond (pg144)

Q 7) Complete the following table: (pg 153)

Molecule	Hybridization	Bond
		Angle
CH ₄		
C ₂ H ₄		
BeF ₂		
NH ₃		

CH: 4 STRUCTURE OF ATOM

റ	1	MILITIPLE	CHOICE O	LIFSTIONS	(pg 121-122)
ч		IVIOLIII LL	CHOICE Q	CESTIONS	DE TET TEE

1) Principal Quantum number describes _____

- (a) Shape of orbital
- (b) Size of the orbital
- (c) Spin of the electron
- (d) Orientation of the orbital electron cloud
- 2) The maximum number of electrons in a subshell for which I =3 is_____

(a) 14 (b) 10 (c) 8 (d) 4
Q 2 State and explain Pauli's exclusion principle (pg 110 Q 81) Q 3 Match the Pairs: (pg 111Q 83)
Column A. Column B
1) Neutrons a) six electrons
2) p- orbitals. b) -1.6×10 ⁻¹⁹ C
3) Charge on electron (c)Ultraviolet region
4) Lyman series (d) Chadwick
Q 4 Write the condensed orbital notation of electronic configuration of the following elements:(pg 114 Q 92)
(a) Oxygen (Z=8) (b) Silicon (Z=14)
(c) Calcium (Z=20)
Q 5 Write the orbital notations for the electrons in orbitals with the following quantum numbers: (pg 105 Q 63) $$
a)n=2, l= 1 (b)n=4,l=2 (c) n=3,l=2
Ch :6 REDOX REACTIONS
MULTIPLE CHOICE QUESTIONS:(pg 213-214)
1) OXIDATION number of metal ion is always
(a) Positive(b) Negative(c) Zero(d) Non Zero
2) Which of the following halogens does always show oxidation state -1?
a) F (b) CI (c) Br (d) I
3) chemical reaction in which oxidation and reduction processes takes place simultaneously is known asreaction

- (a) Redox
- (b) precipitation
- (c)Complexometric
- (d) titration
- Q 2 Calculate the oxidation number of the underlined atoms: (pg181 Q 29)
- a) H_2SO_4 (b) HNO_3 (c) H_3PO_3 (d) K_2C2O_4
- (e) $H_2S_4O_6$ (f) Cr_2O7-^2 (g) NaH_2PO_4
- (h) H_2 PtCl₆ (I) Mn(OH)₃(j)Na₂CO₃ (k) K_3 FeCN₆
- Q3 Write the formulae for the following compounds:(pg 186 Q 37)
- a) Mercury (II) chloride
- b) Thallium (I) sulphate
- c)Tin(IV) Oxide
- d) Chromium (III) Oxide
- Q 4 Balance the following reactions by Oxidation number method:(pg193)
- a) $Cr_2O_7^{-2} + SO_3^{-2} Cr + ^3 + SO_4^{-2}$ (acidic)
- b) $H_2SO_4+ Sn(OH)_3- -----> Bi (s)+ Sn(OH)_2(aq) (basic)$
- Q 5 Balance the following redox reaction by half reaction method:(pg202)

*Q.56. Balance the following redox equation by half reaction method:
i.
$$H_2C_2O_{4(aq)} + MnO_{4(aq)}^- \longrightarrow CO_{2(g)} + Mn_{(aq)}^{2+}$$
 (acidic)
ii. $Bi(OH)_{3(s)} + SnO_{2(aq)}^{2-} \longrightarrow SnO_{3(aq)}^{2-} + Bi_{(s)}$ (Basic)

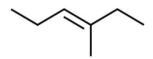
CH: 1 SOME BASIC CONCEPTS OF CHEMISTRY

- Q 1 MULTIPLE CHOICE QUESTIONS:(pg 31)
- 1)How many gm of H₂O are present in 0.25 mol of it?
- a) 4.5
- b)18
- c)0.25
- d)5.4
- 2) In the reaction N_2+3 $H_2---->2$ N H_3 , the ratio by volume of N2,H2 &NH3 is 1:3:2 This illustrates the law of _____
- a) Definite proportion

b)Reciprocal proportion c) Multiple proportion d)Gaseous volumes
Q 2 What SI units of Time, Temperature, Electric current, Amount of Substance, (pg 4) Q 3 Convert the following degree Celsius to degree Fahrenheit.(pg 7) a) 40° C b)30° C
Q 4 What is the volume of Carbon dioxide occupying by a) 5 moles and b) 0.5 mole of Carbon dioxide gas measured at STP.(pg 26)
Q 5 Calculate the mass of potassium chlorate required to liberate 6.72 dm³ of oxygen at STP. Molar mass of potassium chlorate is122.5 g mol-1 . (pg 27) Ch: 2 INTRODUCTION TO ANALYTICAL CHEMISTRY
Q 1 MULTIPLE CHOICE QUESTIONS
1) In Avogadro's constant 6.022 × 10 ²³ mol-1 the number of significant figures is (pg 66) a) 3 (b)4. (c) 5 (d)6
2)18.238 is rounded off to four significant figures as. (pg 66)
a)18.20 (b)18.23 (c)18.2360. (d) 18.24
3)The hydrocarbon contains 7987% carbon and 20.13% of hydrogen. What is the empirical formula ? a) CH b) CH ₂ c) CH ₃ d) C_2H_5
Q 2Explain the terms d) Mole fraction (pg 59) e)Molarity(pg 59) f)Molality(pg 59)
Q 3 Explain the given quantities in exponential notations (pg 37) a)1.230× 10^4 b)0.0003498

c) 1.89×10⁻⁴

Q 4 What weight of Calcium Oxide will be formed on heating 19.3 g of Calcium Carbonate?(Atomic Weight Ca= 40 ,C=12, O=16) [pg 55]


Q 5A substance, on analysis gave the following percent composition Na= 43.4% C= 11.3% O= 45.3% .Calculate the empirical formula(pg 51)

(At Wt Na=23, C=12, O=16)

CH 14: BASIC PRINCIPLES OF ORGANIC CHEMISTRY

Q1: MULTIPLE CHOICE QUESTIONS:(pg 195-196)

- 1) A member of homologous series differs from immediate about or below member by_____
- (a)-CH₃
- (b) -CH₂-
- (c)--CH₂CH₃
- $(d)-C_6H_5$
- 2) The correct IUPAC name of the compound given is

- a) hept-3-ene
- b) 2-ethylpent-2-ene
- c) hex-3-ene
- d) 3-methylhex-3- ene
- 3) The homologus series of alcohols have general molecular formula
- a) $C_nH_{2n+1}OH$
- b)CnH_{2n+2}OH
- c)CnH_{2n-2}OH
- $d)C_nH2_nOH$
- 4) The geometry of carbocation is_____
- a)Linear
- b) Planar
- c)Tetrahedral
- d) Octahedral
- Q 2 Write the bond line formulae and condensed formulae for the following compounds:(pg 149)

- 1) 3- Methyloctane
- 2)Hept-2- ene
- 3)Octa-1,4-diene
- Q 3 What is meant by homologous series? Write the first four member of homologous series that begins with CH₃CHO(pg158)
- Q 4 A covalent bond in tertiary butyl bromide breaks in a suitable polar solvent to give ions.(pg177)
- a) Name the anion produced by this breaking of a covalent bond.
- b)Indicate the type of Bond breaking in this case.
- c)Comment on geometry of cation formed by such a bond cleavage.
- Q 5 Explain the terms:(pg 172,178)
- a) Electrophile b) Nucleophile
- Q 6 Distinguish between:
 - a) Homolysis and Heterolysis
 - b) Carbocation and Carbanion
 - c) Inductive effect and Resonance effect
- Q 7 An electronic displacement in a covalent bond is represented by the following notation. (pg 181)

$$+\delta$$
. $+\delta$. $-\delta$ $CH_3--->--CI$

- A) Identify the effect
- B) Is the displacement of electrons in a covalent bond temporary or permanent.