QUESTION BANK CS PAPER II

Q1. MCQ Based Questions

1. What is meant of this equation $x \cdot y = y \cdot x$?						
a) associative law	b) identity law	c) co	mmutative law	d) inverse property	Ans c)	
2. Which expression is the distributive law of Boolean algebra? $A \cdot (B + C) = A \cdot B + A \cdot C$ b) $(A + B) + C = A + (B + C)$						
c) $\mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C}) = (\mathbf{A} \cdot \mathbf{C})$		$\mathbf{B} \cdot \mathbf{C}) = (\mathbf{A} \cdot \mathbf{B}) \cdot$			Ans. a)	
$3. \mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$					•	
a) Commutative	b) Associative	c) D1	stributive	d) Idempotent	Ans. a)	
4. $A \cdot (B + C)$	$A \cdot B + A \cdot C;$	$\mathbf{A} + \mathbf{B} \cdot \mathbf{C} = (\mathbf{A})$	$(A + B) \cdot (A + C) $	represent which laws?		
a) Commutative	b) Associative	c) Di	stributive	d) Idempotent	Ans. d)	
 5. The dual of a Boolean expression is obtained by a. interchanging all '+' and '.' Signs b. interchanging all 0s and 1s, all + and '.' Signs c. interchanging all 0s and 1s, all + and '.' signs and complementing all the variables 						
00	all $+$ and '.' signs and	e			Answer: B.	
	ollowing is/are the un	00			A ma (a)	
a) AND and OR	b) AND, OR a	lid NOT	c) NAND and	I NOR d) NOT	Ans. c)	
7. The expression	n of a NAND gate is_					
a) A·B b)	$A' \cdot B + A \cdot B'$	c) (A·B)'	d) (A + B)'		Ans. c)	
8. Agate gives the output as 1 only if all the inputs signals are 1.						
	OR	c) Ex-OR	d) NOR		Ans. a)	
-	h is used to reverse th) NAND	e output obtain c) Ex-OR	ed 1s d) NOT		Ans. d)	
a) NOR 0)		C) LA-OK	u) 1101		7 ms. u)	
10. The symbol + in Boolean is also known as theoperator.						
a) AND b)	OR	c) Ex-OR	d) NOR		Ans. b)	
11. NAND is a complement of						
	OR	c) NOT	d) XOR		Ans. a)	
12. The output of a NOR gate is higha) Only when all the inputs are lowb) Only when all the inputs are high						
a) Only when all the inputs are low b) Only when all the inputs are light						

a) Only when all the inputs are low	b) Only when all the inputs are high	
c) Only when at least one input is high	d) Only when at least one input is low	Ans. a)

13. The output of a NAND gate is lowa) only when all the inputs are lowb) only when all the inputs are highc) only when at least one input is highd) only when at least one input is lowAns. b)					
 14. An AND gate can be imagined as a) switches connected in series b) switches connected in parallel c) switches connected in criss-cross d) switches connected in circular 					
15. An OR gate can be imagined asa. switches connected in seriesb. switches connected in parallelc. transistors connected in seriesd. transistors connected in parallel		Answer: switches connected	in parallel		
16. The output of a gate is LOW when at least one of its inputs is HIGH. This is true fora. ANDb. NANDc. NORd. ORAnswer: NOR					
17. The output of a logic gate is 1 when all its inputs are at logic 1. The gate is eithera. a NAND or a NORb. an AND or an ORc. an OR or an X-ORd. an AND or a NORAnswer: an AND or an OR					
18. In which binary operation carry is obtained?a) Subtractionb) Additionc) Multiplicationd) Both addition and subtractionAns. b)					
19. In Boolean algebra, (1 + x + x')' = a) 1 b) 0 c) x d) x'	=?				
20. A bubble gate isa) NOT gateb) an inverterc) both a and bd) There is no such gate					
21. When we convert 10010 binary nu a) 20 b) 18 c) 14 d) 16	umbers to decimals. Then Ans. b) 18	the solution is :			
 22. Convert (22)₈ from octal to its corresponding decimal equivalent. 20 b) 18 c) 14 d) 81 Ans. b) 18 					
23. Name the number system which uses alphabets as well as numerical.a) Binary number systemb) octal number systemc) Decimal number systemd) Hexadecimal number systemAns. d)					
24. Which out of the following binary number is equivalent to decimal number?a) 11011b) 11000c) 11111d) 11001Ans. b)					
25. How many digits are there in octain a) 6 b) 9 c) 5 d) 8	l number system? Ans. d) 8				

26. One nibble contains		numbe	r of bits			
a) 3 b) 4	c) 8	d) 16	Ans. b) 4		
				to octal equivalen	t will be	
a) 451 b) 3	51 c) 251	d) 151	Ans. d) 151		
28 Convo	t the hiner	u numbor (100	110) to be	xadecimal equival	ant is give	
	•	d) 34		-	ent is give	
a) 40 D) 3	5 C) 20	u) 54	Alls.c)	20		
29. When	ve convert	0010010100 b	inary to oc	tal. Then the soluti	on is:	
		d) 161	-			
30. Conver	t hexadeci	mal (FACE) ₁₆	to its equi	valent binary		
a) 1111101	011001110	b) 00111010	11010011			
c) 1100111	11110001	d) 10101010	1101111	Ans. a)		
31. Idempo	tent Law i	n Boolean alge	ebra is	_		
a) $x + x = x$	b) x +	x' = 1 c) x	$\cdot \mathbf{x} = \mathbf{x}$	d) both a and c	Ans. d)	
32. Identity Law in Boolean algebra is a) $x + x = x$ b) $x \cdot x = x$ c) $x + 0 = x$ d) All of these Ans. c)						
a) $x + x - x$	$(0) \mathbf{X} \cdot \mathbf{A}$	X = X C) X	+ 0 - x	d) All of these	Ans. c)	
33. Identity Law in Boolean algebra is						
a) $1 \cdot \mathbf{x} = \mathbf{x}$	b) x +	0 = x b) be	oth a and b	d) None of these	Ans. b)	
Q. 2. Answer in short. (2 marks)						
1. Explain 'base' of number systems with examples.						
2. What is the value of base of Binary, Octal and hexadecimal number systems.						
3. How is a number in binary number system converted into its equivalent decimal system?						
4. Explain Decimal to binary conversion.						
a. (10110011100001011) ₂						
b. (1110110) ₂						
c. $(110011001)_2$						

- 5. Write in tabular form values of decimal numbers 0 to 30 and their equivalents in binary and Hexadecimal
- 6. Write in tabular form values of decimal numbers 0 to 7 and their equivalents in octal
- 7. What is ones and twos complement. Give examples.
- 8. What are logic gates?
- 9. Name the universal gates.
- 10. Define Ex-OR logic.
- 11. What is a gate? What are different types of gates, mention various gates under each type.
- 12. Consider (A) = 5A H, (B) = C3 H, show with working, the result of following operations
 - a. ANDing operation on A and B
 - b. ORing operation on A and B
 - c. Ex-ORing on A and B
 - d. NANDing operation on A and B
- 13. (Practise similar examples with different Hex data and different operations)

- 14. Convert DABBAA H, FE H and 12345 H in Octal numbers.
- 15. Explain with definition, diagram, working and truth table:
 - a. AND gate
 - b. OR gate
 - c. Ex-OR gate
 - d. NAND gate
 - e. NOR gate
 - f. Ex-NOR gate (3 marks each)
- 16. With 2 (or 3) distinct points, differentiate Inclusive OR and Exclusive OR gate. (2/3)
- 17. State both the laws of De-Morgan's in Boolean algebra. Prove any one law using truth table.
- 18. State distributive law in Boolean algebra. Prove any of these laws using truth table.
- 19. State and explain commutative law (or associative law) in Boolean algebra.
- 20. Convert each binary number to its decimal equivalent. 1.10110 2. 110011001 3.100101110110
- 21. Convert each decimal number to its binary equivalent. 1.11234 2.458 3.76
- 22. Convert each octal number to its hexadecimal equivalent 1.640_8 2.756_8 3.315_8
- 23. Convert each hexadecimal number to its octal equivalent
 - a. AA42
 - b. 1FADE
 - c. BA156
- Q. 3 Perform the following binary addition
- 1. $(111010101010 + 11010000111 + 1010111011)_2$
- 2. $(1111+1001+1111+0011)_2$
- 3. $(10101 + 11001 + 01111)_2$
- 4. $(10101 + 11010 + 111)_2$

Q4. Add 3 digit max number in Hexa with 2 digit Max number in Octal with 4 digit max Number in Binary. Express the sum in decimal.

- Q5. Convert the following hexadecimal to binary
 - 1. COFFEE
 - 2. 6A7
 - 3. 2BAD
 - 4. BED

Q6. Solve the following circuit diagram

Q7. Realize (draw) the Boolean Expression \overline{BC} + A + (A + C) using logic gates Realize (draw) the Boolean Expression X + YZ using logic gates

Q8. Realize (draw) the Boolean Expression (A+B) + (A.B) using logic gates (Examplesin q paper other diagrams can also be given.)

Q8. Fill in the blanks and rewrite the sentences.

- 1. The base of a number system is _____.
- 2. In the number 4657, if the number 7 is called as least Significant digit, then the number 4 is called as _____.
- 3. Binary equivalent of hexadecimal number 76A is _____.
- 4. is a valid number in Hexadecimal Number System.

- 5. In Octal number system, before the number comes the Octal number 67.
- 6. The max value of a digit in Octal number system is
- 7. The max value of a digit in Hexadecimal number system is
- 8. The Min 2-digit Octal Number is _____
- 9. The Min 3-digit Hex Number is _____
- 10. 1-bit sum of binary bits 1 with 1 is _____
- 11. Full form of 'bit' is _____
- 12. Which is typically the longest and the smallest :- bit, byte, nibble, word?
- 13. What is a group of four bits known as?
- 14. Arrange the following numbers in ascending order. (1100) 2, (1001)2, (1011)2

Q9. Solve the following. and Show steps for every solution/ conversion]

1) $(ABCA)_{16} = (?)_{10}$ 2) $(175751)_8 = (?)_{10}$ 3) $(1717)_{10} = (?)_8$ 4) $(40512)_6 = (?)_{10}$ 5) $(16119)_{10} = (?)_{16}$ 6) $(101110)_2 = (?)_8$

Q10. Solve ANY TWO of the following and show steps for every solution/conversion

- 1. Is the number 12101130 a binary number? Explain.
- 2. Is the number 121FAD a Hexadecimal number? Explain.
- 3. Which is the larger number, $(11111)_2$ or $(111)_{10}$? Why?
- 4. $(2FAF)_{16} = (?)_8 = (?)_2$
- 5. $(2ABCD)_{16} = (?)_2$
- 6. $(110110)_2 = (?)_{10}$
- 7. Convert the Decimal number 255 to its equivalent Binary, Octal, Hexadecimal number.
- 8. Convert the decimal number 112000 in Hexa
- 9. Convert the decimal number 100000 in Octal
- 10. Convert the decimal number 201000 in binary
- 11. Convert the binary number 10110011101101111 into decimal
- 12. What are universal gates? Explain any one with logic diagrams.
- 13. Define and explain the AND and OR logic gates with truth table and symbol.
- 14. Explain the EX-OR gate.
- 15. Binary subtraction using 2's complement method
- 16. (1) 1001001-11101101 (2)111110001-100110
- 17. Explain De-Morgan's Theorems
- 18. Explain the associative law.

Q11. Solve ANY TWO of the following and show steps for every solution/conversion 1) $(371)_{16} = (?)_8$

- 1) $(3/1)_{16} (1)_{8}$
- 2) $(4CAE)_{16} = (?)_8$

3) $(6751)_8 = (?)_2$